Demographic Inputs for Utah’s Long-Term Baseline and Scenario Planning Projections

June 2023

Mike Hollingshaus
Senior Demographer

Emily Harris
Senior Demographer

Mallory Bateman
Director of Demographic Research
Table of Contents

Introduction .. 1
UDEM Overview .. 1
Process Overview .. 2
Detailed Inputs and Assumptions 3
Births .. 3
Deaths .. 4
Net Migration ... 5
2020 Census Data Adjustments 9
Appendix ... 10

Figures
Figure 1: UDEM Projection Key Indicators 1
Figure 2: Historical and Projected U.S. and Utah Total Fertility Rate, 1990-2060 3
Figure 3: Utah State Age-specific Fertility Rates, 2019 and 2060 ... 4
Figure 4: Female Historical and Projected Life Expectancy at Birth for the U.S. and Utah, 1990-2060 5
Figure 5: Male Historical and Projected Life Expectancy at Birth for the U.S and Utah, 1990-2060 5
Figure 6: Age-specific Mortality Rates for Utah Females, 2019 and 2060 6
Figure 7: Age-specific Mortality Rates for Utah Males, 2019 and 2060 6
Figure 8: Total Employment in Utah by Scenario, 2025-2060 .. 6
Figure 9: Utah’s Economic Regions 6
Figure 10: Initial Target Net Migration Rates, Utah and Large Counties 7
Figure 11: Initial Target Net Migration Rates, County Groupings ... 8
Figure 12: Modeled Missionary Age-specific Net Migration Rates for Utah 8
Appendix Figure 1: Observed and Smoothed Utah State Age-specific Fertility Rates, 2014-2018 10
Appendix Figure 2: Observed and Smoothed Utah Female Age-specific Mortality Rates, 2008-2012 11

Tables
Table 1: State-level Scenario Assumptions Overview 1
Table 2: Total Fertility Rates for Utah Regions, 2019 and 2060 ... 4
Table 3: Life Expectancy at Birth for Utah Regions, 2019 and 2060 ... 5
Table 4: Modeled Employment (in Thousands) for Utah Regions, 2019 and 2060 6
Table 5: Target Allocation Shares for Utah’s Retirement “Net-in” Migrants 8
Table 6: Summary of Utah Special Population Designations by County 9
Introduction

This document presents inputs and methods that produced the demographic components of change for the Vintage 2021 Kem C. Gardner Policy Institute’s Utah Demographic and Economic Model (UDEM). Details include geographic variations within the state, age and gender patterns, and special types of migration related to retirement, missionaries, students, and other special populations. The document also reports how the limited 2020 decennial census data were combined with other resources and models to inform the process.

UDEM produces low, baseline, and high scenarios of Utah’s resident population through 2060 as part of the Long-Term Planning Projection products. This document serves as a supplement to the basic UDEM methodology already published. The assumptions and inputs provided in this document provide additional insights and transparency into the UDEM process.

UDEM Overview

Key Indicators

UDEM projects the three demographic components of change: births, deaths, and net migration. Each year, natural increase (the excess of births over deaths) and net migration (the excess of in over out migrants) can increase or decrease a population. These components combine to form the demographic balancing equation upon which projection models are built.

In UDEM, three key indicators drive the components of change: total fertility rate (TFR), life expectancy at birth (LEB), and total employment. Figure 1 overviews how the three indicators translate to inputs, the combination of which results in the components of change each year.

Table 1 summarizes these indicators at the state level for low, baseline, and high projection scenarios. Data for 2019 (prior to the COVID-19 pandemic) are also included for reference.
Process Overview

UDEM is a modified cohort-component projection model custom-designed for Utah's unique demographic characteristics. First, natural increase is calculated using rates derived from projected LEB and TFR. The population is then aged one year to produce the “survived-and-aged” population. Finally, migration is used to balance the discrepancy between the labor supply (determined by the survived-and-aged population) and demand (determined by economic modeling).

Projected fertility rates, life expectancy, and employment differ between counties and multi-county regions within the state. To address these variations, UDEM uses layers of detail to translate each indicator into rates of birth, death, or migration that are patterned by age and sex. Employment is the main, but not only, driver of migration in UDEM. Missionaries, retirees, and other special populations influence migration in varied ways throughout the state.

The UDEM method follows a general pattern. The key indicators are projected first, and the detail is added later through various models and assumptions. Finally, this process must be repeated three times: once each for the (1) baseline, (2) low, and (3) high scenarios.
Detailed Inputs and Assumptions

Births

The total fertility rate (TFR) is the number of children the average woman might expect to have throughout her life. UDEM projects Utah's TFR in relation to the U.S. Census Bureau's “middle”, or baseline, projections. First, we model how Utah's TFR compares to the U.S. historically, and then use different assumptions to extrapolate that trend forward to create the three scenarios. The TFR is calculated for counties and multi-county regions by holding the ratio of the region's TFR to Utah's constant over time. To create age-specific fertility rates (ASFRs), we combine the changing TFRs with a constant age shape. Key data sources included the U.S. Census Bureau, Utah Department of Health, and the National Center for Health Statistics.

State Results

For both the U.S. and Utah, the TFR dropped precipitously since 2007. Prior to 2002, Utah's TFR roughly paralleled the nation at a higher level. Since then, the rates have been converging. The rate of convergence picked up after 2007 (Utah's most recent fertility peak), and then increased from 2017-2019. This iteration of UDEM assumes Utah's TFR will continue converging towards the nation's TFR at a constant rate (see Appendix). Figure 2 shows the projected state-level baseline, high, and low TFRs.

Scenario Assumptions

- **Baseline** - Uses the full TFR data for 2002-2019.
- **High** - Assumes the most rapid declines for 2017-2019 were temporary outliers and fits data for 2002-2016, producing a slower rate of convergence.

The first projected year for the Census Bureau's TFR was 2016, whereas the UDEM TFR began in 2019. The Census Bureau's overall U.S. TFRs are constant throughout their projection horizon. First, we updated the Census Bureau projections using the most recently available historical data (to 2019) and then held that TFR constant as a reference point for our projections. To capture near-term variations, we merged the short-term with the trend over a 20-year period using a weighted-average approach.

Geography

TFR estimates were produced for five counties: Salt Lake, Utah, Davis, Weber, and Washington. All five counties featured large enough populations to produce reliable estimates and unique data patterns that warranted separate treatment. For the remaining 24 counties, TFR estimates were projected for every economic or other multi-county region. At each time point, the 2019 ratio of the geography's TFR to the state is maintained. Table 2 reports TFR data for Utah.

Multi-county Regions

This document details several multi-county regions. Many of Utah's county populations are too small to obtain reliable estimates of demographic metrics, especially when detailed by age and sex. This necessitates combining counties into multi-county regions. Decisions were made based upon the purpose, data availability, observed data patterns, and expert local knowledge. We revisit these groups as part of the process for each new iteration of future projections, since Utah is always changing.

While the 2017 projections were done at two levels: state and counties, the 2021 projections also included an intermediate geography called an “economic region”. More information on the economic regions can be found in the Net Migration discussion below. Projections are generally done top-down, meaning the larger level is projected first, then then smaller region is projected, and components of change are statistically controlled to match the total.

When projecting individual metrics for a region or county, we applied the finest level of detail available. For example, we could estimate reliable birth age schedules for Salt Lake County but not Iron County; therefore, we projected Salt Lake County using its own rate schedule, but Iron County using the Southwest Economic Region's schedule.

![Figure 2: Historical and Projected U.S. and Utah Total Fertility Rate, 1990-2060](image-url)
Table 2: Total Fertility Rates for Utah Regions, 2019 and 2060

<table>
<thead>
<tr>
<th>Region / Scenario</th>
<th>2019</th>
<th>2060</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Historical</td>
<td>Low</td>
<td>Baseline</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>State Of Utah</td>
<td>1.00</td>
<td>1.74</td>
<td>1.78</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td>Uintah Basin Economic Region</td>
<td>1.22</td>
<td>2.13</td>
<td>2.17</td>
<td>2.28</td>
<td></td>
</tr>
<tr>
<td>West Central Economic Region</td>
<td>1.06</td>
<td>1.85</td>
<td>1.89</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>Southwest Economic Region</td>
<td>1.03</td>
<td>1.79</td>
<td>1.83</td>
<td>1.92</td>
<td></td>
</tr>
<tr>
<td>Southeast Economic Region</td>
<td>0.97</td>
<td>1.69</td>
<td>1.73</td>
<td>1.81</td>
<td></td>
</tr>
<tr>
<td>Greater Salt Lake Economic Region</td>
<td>0.99</td>
<td>1.73</td>
<td>1.77</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>East Central Economic Region</td>
<td>0.93</td>
<td>1.61</td>
<td>1.65</td>
<td>1.72</td>
<td></td>
</tr>
<tr>
<td>Utah County</td>
<td>1.18</td>
<td>2.06</td>
<td>2.11</td>
<td>2.21</td>
<td></td>
</tr>
<tr>
<td>Rich/Wasatch Counties</td>
<td>1.10</td>
<td>1.93</td>
<td>1.97</td>
<td>2.06</td>
<td></td>
</tr>
<tr>
<td>Cache/Morgan Counties</td>
<td>1.10</td>
<td>1.92</td>
<td>1.96</td>
<td>2.05</td>
<td></td>
</tr>
<tr>
<td>Box Elder/Tooele/Juab Counties</td>
<td>1.10</td>
<td>1.91</td>
<td>1.95</td>
<td>2.04</td>
<td></td>
</tr>
<tr>
<td>Davis County</td>
<td>1.07</td>
<td>1.86</td>
<td>1.90</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>Washington County</td>
<td>1.03</td>
<td>1.79</td>
<td>1.83</td>
<td>1.92</td>
<td></td>
</tr>
<tr>
<td>Weber County</td>
<td>0.96</td>
<td>1.67</td>
<td>1.71</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>Salt Lake County</td>
<td>0.90</td>
<td>1.57</td>
<td>1.61</td>
<td>1.68</td>
<td></td>
</tr>
<tr>
<td>Daggett/Grand/San Juan/Summit Counties</td>
<td>0.88</td>
<td>1.54</td>
<td>1.57</td>
<td>1.64</td>
<td></td>
</tr>
</tbody>
</table>

Source: Kem C. Gardner Policy Institute

Age Schedules

Figure 3 shows the smooth age-specific fertility rates (ASFRs) developed and used for the state in UDEM. For ASFRs, only women are included in the denominator. ASFRs for each single-year age group are summed to produce the state's TFR, represented by the area underneath each curve in Figure 3. The peak childbearing age for the state occurs a little before age 30 in both 2019 and 2060. See the Appendix for further details.

Deaths

Life expectancy at birth (LEB) is the number of years the average newborn is expected to live. The general UDEM approach is identical to the TFR method: the LEB is projected in relation to the Census Bureau’s middle scenario. Consistent with best practices, these estimates are produced separately for males and females. Multi-county region values were determined by 2019 ratios to the state and a smoothed age schedule was used for the age-specific mortality rates (ASMR). Key data sources included the U.S. Census Bureau, Utah Department of Health, National Center for Health Statistics, and USA Mortality Database.

State Results

Utah has long had a higher LEB for males and females than the nation. In 1990, the Utah and U.S. LEB began converging at roughly constant rates for both men and women. LEB has converged faster for women and is now virtually identical to the nation.4

Figures 4 and 5 present state-level LEB for each sex and scenario. For the baseline scenario, the LEB gap (Utah – U.S.) is projected to converge but not cross. The female LEB is always higher than the male, which is nearly universal in human populations. Despite some recent setbacks, LEB is expected to continue rising.5

To capture near-term patterns for Utah, we merged the short-term to the trend over a 10-year period using a weighted average between the last observed LEB and the projected trend. The Census Bureau’s series does not do this, resulting in the jump between 2016 and 2017. There is no short-term adjustment for COVID-19. We made this decision due to the uncertainty of COVID-19’s future impacts on death rates.

Scenario Assumptions

- **Baseline** – Convergence continues at a constant rate for both males and females.
- **High** – The LEB difference will return to its 1990 level by 2045. This will occur by the same amount annually beginning in 2017 (linear change).
- **Low** – The mirror image of the high scenario, symmetrical around the baseline scenario.
Sources: Kem C. Gardner Policy Institute, U.S. Census Bureau, USA Mortality Database.

Figure 4: Female Historical and Projected Life Expectancy at Birth for the U.S. and Utah, 1990-2060

Sources: Kem C. Gardner Policy Institute, U.S. Census Bureau, USA Mortality Database.

Figure 5: Male Historical and Projected Life Expectancy at Birth for the U.S and Utah, 1990-2060

Sources: Kem C. Gardner Policy Institute, U.S. Census Bureau, USA Mortality Database.

Geography

Some economic regions were combined: (1) Southeast and Uintah Basin, (2) West Central and East Central. Six counties had their own LEB estimates: Salt Lake, Utah, Davis, Weber, Cache, and Washington. LEB county groupings were different than those used in the fertility rates. All other counties used rates from their larger regions. Table 3 summarizes the life expectancy data.

Age Schedules

Age-specific mortality rates (ASMRs) can be roughly interpreted as the probability someone of a given age dies during a certain year. Figures 6 and 7 show the smooth ASMRs developed and used in UDEM for the state-level projections. Rates are highest at the end of life, and then in infancy. In the middle of life, there is a slight hump which generally relates to accidental deaths, especially for males, and also maternal mortality for females. Unlike TFR, it is difficult to explain LEB in relation to its rates, but the methods are well-documented. 6 See the Appendix for more details.

Net Migration

As discussed above, there are four types of migration included in UDEM: (1) employment-related, (2) retirement, (3) missionary, and (4) migration for special populations such as students. Most of the net migration is employment-related.

Employment

The difference between projected employment and the employed working-age population determines the number of labor migrants. Employment is the main driver of adult and child migration. Children are assumed to migrate with these adults, calculated by the child dependency ratio. Complete details are in the full UDEM documentation. After an initial UDEM model run, additional employment is modeled for the construction, retail trade, and healthcare industries, because they depend highly on the new migrants.

The Gardner Institute Industry Trends Model (GITM) uses the Bureau of Economic Analysis (BEA) concept for industry insights to project total employment. 7 Regional Economics Models,
Table 4: Modeled Employment (in Thousands) for Utah Regions, 2019 and 2060

<table>
<thead>
<tr>
<th>Region / Scenario</th>
<th>2019 Region</th>
<th>2060 Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of Utah</td>
<td>2,130</td>
<td>2,820</td>
</tr>
<tr>
<td>Greater Salt Lake Economic Region</td>
<td>1,880</td>
<td>2,510</td>
</tr>
<tr>
<td>Southwest Economic Region</td>
<td>147</td>
<td>207</td>
</tr>
<tr>
<td>West Central Economic Region</td>
<td>35.8</td>
<td>36.6</td>
</tr>
<tr>
<td>Uintah Basin Economic Region</td>
<td>30.9</td>
<td>31.1</td>
</tr>
<tr>
<td>East Central Economic Region</td>
<td>16.5</td>
<td>14.6</td>
</tr>
<tr>
<td>Southeast Economic Region</td>
<td>15.2</td>
<td>16.1</td>
</tr>
</tbody>
</table>

Source: Kem C. Gardner Policy Institute, Bureau of Economic Analysis

Geography

The Gardner Institute economic regions provide the substate geographic framing for employment projections. These regions, created in 2020, reflect multi-county areas with close connections in commuting and other economic relationships. Figure 9 and Table 4 provide a map of the regions and an overview of total employment projections.

The GITM employment projections utilize relational stochastic time series models. Predicted percentiles were used for scenarios.
Scenario Assumptions
- **Baseline** – 50th percentile (median).
- **High** – 75th percentile.
- **Low** – 25th percentile.

Labor Migration – Geography and Age Schedules
Five counties received their own net migration schedules: Salt Lake, Utah, Davis, Weber, and Washington. Smoothed schedules for these counties and the state are in Figure 10. The remaining 23 counties were grouped into four typologies: aging, ring, rural, and rural-school counties (see Figure 11).9

To project future labor migration, the modeled migrants and their children must be assigned a sex and age. UDEM distributes migrants evenly between males and females, so detailed focus was placed on age schedules. Each age schedule serves as an initial series of values that are uniformly shifted up or down to match the projected number of net migrants. Since net migration data from 2000-2010 were the most reliable at the time of projection, those rate data provided a foundation which we smoothed using cubic splines.10

Retirement Migration
The combination of the aged (65 years and older) dependency ratio with labor migration determines total retirement net migration. That migration is then distributed across selected counties. Retirement net migration consists of in and out migrants. Utah is a net in-migration state for retirees (more people enter than leave the state). Among the counties, Salt Lake County is unique in that it assumes negative retirement net migration, meaning more migrants leave than enter. Some counties receive zero retirement net migrants. The distribution of migrants within the “net-in” counties appears in Table 5. The detailed methods for this procedure are in the full UDEM documentation.

Missionary Migration
Each year, a significant share of 18 to 22-year-olds temporarily exit the state to serve missions for the Church of Jesus Christ of Latter-day Saints, returning 18 months to two years later, depending upon their gender. Excluding missionary migration would bias our college-age projections. Figure 12 shows target modeled net migration rates for young adult males and females. Due to data uncertainty, all geographic levels and time points use the same rates.
Figure 11: Initial Target Net Migration Rates, County Groupings

Table 5: Target Allocation Shares for Utah’s Retirement “Net-in” Migrants

<table>
<thead>
<tr>
<th>Economic Regions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater Salt Lake</td>
<td>52.6%</td>
</tr>
<tr>
<td>Southwest</td>
<td>43.2%</td>
</tr>
<tr>
<td>West Central</td>
<td>4.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Counties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington</td>
<td>35.8%</td>
</tr>
<tr>
<td>Utah</td>
<td>27.9%</td>
</tr>
<tr>
<td>Davis</td>
<td>10.1%</td>
</tr>
<tr>
<td>Iron</td>
<td>5.2%</td>
</tr>
<tr>
<td>Cache</td>
<td>4.7%</td>
</tr>
<tr>
<td>Weber</td>
<td>4.2%</td>
</tr>
<tr>
<td>Tooele</td>
<td>2.9%</td>
</tr>
<tr>
<td>Sanpete</td>
<td>2.2%</td>
</tr>
<tr>
<td>Box Elder</td>
<td>2.0%</td>
</tr>
<tr>
<td>Wasatch</td>
<td>1.9%</td>
</tr>
<tr>
<td>Sevier</td>
<td>1.9%</td>
</tr>
<tr>
<td>Kane</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

Source: Kem C. Gardner Policy Institute

Figure 12: Modeled Missionary Age-specific Net Migration Rates for Utah

Other Migration and Special Populations

Special populations are populations that would not be present if some institution (physical or cultural) did not exist. They typically do not follow population dynamics captured by the standard cohort-component projection method. Failure to account for special populations can bias population projections, especially for small areas such as counties.11

Unfortunately, the limited 2020 decennial census release did not provide adequate data for modeling special populations. Therefore, we used 2010 data from two populations: (1) group quarters measured at the 2010 decennial census; and (2) higher-education student populations for that same year. These counts were aggregated to produce age-sex special population counts that are held constant over time, with net migration being estimated as a residual.

Table 6 summarizes special population types by county. To keep the modeling manageable, we only consider populations that are substantially large or could significantly affect the county’s sex and age structure.
2020 Census Data Adjustments

The UDEM projections rely upon high-quality decennial census data for county, sex, and single-year age groups. However, due to the COVID-19 pandemic and other administrative issues, the Census Bureau delayed delivery of the 2020 decennial census, which did not meet the timelines needed for the January 2022 release of the Gardner Institute’s Utah Long-Term Planning Projections. To address this, we combined previous data sources with the new 2020 census information to create an adjusted starting population.

Initial data estimates for July 1, 2020, were produced by running the UDEM model from 2010-2020, with external controls for the demographic components of change provided by the Utah Population Committee (UPC), to produce a population age and sex distribution.12 The 2020 Decennial Census Public Law Redistricting Data (PL 94-171) file13 provided two new pieces of information: (1) the total population for each county, and (2) how many of those people were under/over age 18. We assumed the UPC-controlled age distributions (conditional on whether someone was under/over 18) were correct and multiplied those by the new information in the PL file.

We then assumed a linear interpolation for each age/sex/county group between 2010 and 2020 to produce new intercensal single-year of age and sex population estimates. Using these as inputs, we also recalibrated the UDEM model parameters before projecting to 2060.

Table 6: Summary of Utah Special Population Designations by County

<table>
<thead>
<tr>
<th>County</th>
<th>Correctional</th>
<th>Juvenile</th>
<th>Military</th>
<th>Other Institutional</th>
<th>Other Non-Institutional</th>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Utah State University</td>
</tr>
<tr>
<td>Carbon</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Utah State University - Eastern</td>
</tr>
<tr>
<td>Davis</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Garfield</td>
<td>Yes</td>
<td>Male</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iron</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Southern Utah University</td>
</tr>
<tr>
<td>Kane</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Piute</td>
<td>-</td>
<td>Male</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Salt Lake</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>University of Utah</td>
</tr>
<tr>
<td>Sanpete</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Snow College</td>
</tr>
<tr>
<td>Utah</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Brigham Young University, Utah Valley University</td>
</tr>
<tr>
<td>Washington</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Utah Tech University</td>
</tr>
<tr>
<td>Weber</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Weber State University</td>
</tr>
</tbody>
</table>

Notes: Under group quarters, a “yes” means both sexes, whereas “male” means males only. A hyphen “-” means no special populations in that group. Student populations include males and females, and institutions are listed.
Source: Kem C. Gardner Policy Institute
Appendix

Convergence at a Constant Rate
We denote the difference of Utah TFR minus U.S. TFR as \(g(t) \). Assumed convergence of TFRs at a constant rate uses an exponential decay model:

\[
g(t) = g(0)e^{rt}
\]

where \(r < 0 \) is the constant rate of change and \(t \) is time (year). It is fit to the historical data by taking logs, running a simple OLS regression model, and then predicting future values. A projected Utah TFR is then obtained from estimated parameters and the already-projected TFRUS by

\[
TFR(t) = e^{\ln(g(0)) + TFR_{US}(t)}.
\]

The same model is used for LEB.

Age-specific Fertility Rate Model
After exploring several methods, we found that a simple proportionate change in ASFRs was not only less resource-intensive, but tended to produce results with better face validity. Also, sensitivity tests showed that compared to the TFR, the shape of ASFRs had little impact on UDEM projection results. If \(x \) is age, the model is

\[
ASFR(x,t) = TFR(t)\times f_{WEI}(x;\Theta),
\]

where

\[
f_{WEI}(x;\Theta) = \left(\frac{a}{\sigma} \right) \left(\frac{x}{\sigma} \right)^{a-1} e^{-\frac{x}{\sigma}}
\]

The function \(f_{WEI} \) is a Weibull probability density function unique to each geography. \(TFR(t) \) provides the time-varying fertility level, and \(f_{WEI} \) the time-invariant age shape. Using a parametric shape also had the added benefit of smoothing the data from five-year to the required single-year age groups. The following figure shows an example fit using maximum likelihood methods.

Appendix Figure 1: Observed and Smoothed Utah State Age-specific Fertility Rates, 2014-2018

Source: Kem C. Gardner Policy Institute.

Age-specific Mortality Rate Model
\(LEB \) is a nonlinear function of ASMRs. For each geography, we used computational methods to solve for a proportionality constant \(\lambda(t) \) such that

\[
LEB(t) = e_0(\lambda(t)q(x)),
\]

where \(e_0 \) is a standard iterative function that produces life expectancy from the \(q(x) \) death probabilities. Similar to TFR, one term provides the time-varying level while the other provides the time-invariant age shape.

We estimated each geography’s initial age schedule of rates by fitting the following model to observed ASMRs:

\[
q(x) = k_1f_1(x;\theta_1) + k_2f_2(x;\theta_2) + k_3F_3(x;\theta_3),
\]

where

\[
f_1(x;\theta_1) = f_{GAM}(x;\alpha,\sigma) = \frac{1}{\sigma^\alpha \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\sigma}}
\]

\[
f_2(x;\theta_2) = f_{LN}(x;\mu,\sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(\ln(x/\mu))^2}{2\sigma^2}}
\]

\[
F_3(x;\theta_3) = F_{LOG}(x;\mu,\sigma) = \frac{1}{1+e^{-\frac{(x-\mu)}{\sigma}}}.
\]

Here, \(f_{GAM} \) is a gamma probability density function, \(f_{LN} \) a log-normal density function, and \(F_{LOG} \) a logistic cumulative distribution function. These three hazard functions provide the time-invariant shapes of the infant/childhood, accidental/midlife, and senescent components of the age schedule, whereas the three \(k(t) \) parameters provide their respective...
Endnotes

Kem C. Gardner Policy Institute Advisory Board

Conveners
Michael O. Leavitt
Mitt Romney

Board
Scott Anderson, Co-Chair
Gail Miller, Co-Chair
Doug Anderson
Deborah Bayle
Roger Boyer
Michelle Camacho
Sophia M. DiCaro
Cameron Diehl
Lisa Eccles
Spencer P. Eccles
Christian Gardner
Kem C. Gardner
Kimberly Gardner
Natalie Gochnour
Brandy Grace
Jeremy Hafen
Rachel Hayes
Clark Ivory
Mike S. Leavitt
Derek Miller
Ann Millner
Sterling Nielsen
Jason Perry
Ray Pickup
Gary B. Porter
Taylor Randall
Jill Remington Love
Brad Rencher
Josh Romney
Charles W. Sorenson
James Lee Sorenson
Vicki Varela

Ex Officio (invited)
Governor Spencer Cox
Speaker Brad Wilson
Senate President
Stuart Adams
Representative
Angela Romero
Senator Luz Escamilla
Mayor Jenny Wilson
Mayor Erin Mendenhall

Kem C. Gardner Policy Institute Staff and Advisors

Leadership Team
Natalie Gochnour, Associate Dean and Director
Jennifer Robinson, Chief of Staff
Mallory Bateman, Director of Demographic Research
Phil Dean, Chief Economist and Senior Research Fellow
Shelley Kruger, Accounting and Finance Manager
Colleen Larson, Administrative Manager
Nate Lloyd, Director of Economic Research
Dianne Meppen, Director of Community Research
Laura Summers, Director of Industry Research
Nicholas Thiriot, Communications Director
James A. Wood, Ivory-Boyer Senior Fellow

Staff
Eric Albers, Public Policy Analyst
Samantha Ball, Senior Research Associate
Parker Banta, Public Policy Analyst
Max Becker, Public Policy Analyst
Andrea Thomas Brandley, Senior Education Analyst
Kara Ann Byrne, Senior Research Associate
Mike Christensen, Scholar-in-Residence
Nate Christensen, Research Economist
Dejan Eskic, Senior Research Fellow and Scholar
Enas Farag, Research Assistant
Emily Harris, Senior Demographer
Michael T. Hogue, Senior Research Statistician
Mike Hollingshaus, Senior Demographer
Thomas Holst, Senior Energy Analyst
Jennifer Leaver, Senior Tourism Analyst
Levi Pace, Senior Research Economist
Prapun Pratoomchat, Senior Research Economist
Heidi Prior, Public Policy Analyst
Natalie Roney, Research Economist
Shannon Simonsen, Research Coordinator
Paul Springer, Senior Graphic Designer
Matt Burbank, College of Social and Behavioral Science
Elena Patel, David Eccles School of Business
Catherine Seegert, David Eccles School of Business

Executive Partners
Mark and Karen Bouchard
The Boyer Company
The Clyde Companies
Salt Lake Chamber

Sustaining Partners
Dominion Energy
Staker Parson Materials and Construction
Wells Fargo

Partners in the Community
The following individuals and entities help support the research mission of the Kem C. Gardner Policy Institute.

Legacy Partners
The Gardner Company
Christian and Marie Gardner Family
Intermountain Healthcare
Clark and Christine Ivory Foundation
KSL and Deseret News
Larry H. & Gail Miller Family Foundation
Mountain America Credit Union
Salt Lake City Corporation
Salt Lake County
University of Utah Health
Utah Governor’s Office of Economic Opportunity
WCF Insurance
Zions Bank

Executive Partners
Mark and Karen Bouchard
The Boyer Company
The Clyde Companies
Salt Lake Chamber

Sustaining Partners
Dominion Energy
Staker Parson Materials and Construction
Wells Fargo