Estimating the Economic Contributions of the Utah Science Technology and Research Initiative (USTAR) to the Utah Economy

Prepared for
The Utah Science and Research Governing Authority

Prepared by
Jan Elise Stambro
Senior Research Economist

Bureau of Economic and Business Research
David Eccles School of Business
University of Utah

February 2012
CONTENTS

Key Findings ... iii
 Economic Prospectus Comparison iii
 Economic Effects of Research Teams iv
 Economic Impacts of Technology Outreach iv
 Economic Impacts of Building Projects v
 Summary Economic Effects ... v

Introduction ... 1

1 Revised Economic Baseline and Evaluation of USTAR’s Performance 2
 Overview ... 2
 Revised Economic Baseline ... 3
 Analysis of USTAR’s Performance 3

2 Economic Effects of USTAR Research Team Spending 5
 Economic Effects of USTAR Research Team Spending 5
 Company Formation and Employment 7

3 Economic Impacts of USTAR Outreach Activities 8
 Overview ... 8
 Economic Impacts of USTAR Outreach Activities 8

4 Economic Impacts of USTAR Research Facility Construction 10
 Economic Impacts of Construction Spending 10

5 Summary Economic Effects of the USTAR Program: FY 2007-FY 2011 12

Appendix A: Economic Impact Modeling 13
 Input-Output Models .. 13
 Estimating Economic Impacts and Effects Using RIMS II 13
 Estimating Fiscal Impacts ... 14
 Terms Used in This Report .. 15

Appendix B: Total USTAR Economic Effects on Utah’s Economy 16

Appendix C: Data Development ... 17
 Original 2005 Economic Prospectus 17
 Revised Economic Baseline .. 18
 Economic Impacts of USTAR Outreach Activities 18
LIST OF TABLES

Table 1 USTAR Performance Comparison
 Five-Year Performance Review ... 4

Table 2 USTAR Research Teams
 External Grants and Team Spending: FY 2007-FY 2011 6

Table 3 USTAR Research Teams
 Summary Economic Effects of Team Spending: FY 2007-FY 2011 7

Table 4 Economic Effects per $1.0 million of Research Spending: FY 2011 7

Table 5 USTAR Outreach Activities
 Economic Impacts of Private Equity Capital
 and Follow-on Financing: FY 2008-FY 2011 9

Table 6 USTAR Research Facilities

Table 7 USTAR Research Facility Construction Impacts: FY 2007-FY 2011
 University of Utah
 James L. Sorenson Molecular Biotechnology Center 11

Table 8 USTAR Research Facility Construction Impacts: FY 2007-FY 2011
 Utah State University
 BioInnovations Center ... 11

Table 9 USTAR Research Facilities
 Total Construction Impacts: FY 2007-FY 2011 11

Table 10 USTAR Summary Economic Effects: FY 2007-FY 2011 12

Table 11 USTAR Economic Effects: FY 2011
 By Program Mission ... 12
THE ECONOMIC CONTRIBUTIONS OF THE
UTAH SCIENCE TECHNOLOGY AND RESEARCH INITIATIVE
(USTAR)

KEY FINDINGS

A five-year review of USTAR’s operations shows that, with one exception, USTAR has met or significantly exceeded the performance measures established in both the original economic prospectus completed in 2005 and the revised economic baseline completed in 2011. The program has been extremely successful in attracting top-level researchers to the University of Utah and Utah State University, creating jobs and income for Utah workers, and generating tax revenue for the state of Utah during a period of economic crisis.

Key findings of USTAR’s performance compared with the revised economic baseline and for each of USTAR’s three program areas—Research Teams, Technology Outreach and Research Facility Construction—are presented here.

Economic Prospectus Comparison

• From FY 2007 through FY 2011, USTAR received $66.6 million in state funding and $27.0 million in federal pass-through funding for a total of $93.6 million. This is 87 percent of the amount originally committed to the program by the Utah legislature in 2006. USTAR has leveraged these funds with $69.7 million in external research grants and contracts—56 percent more than the amount expected in the original 2005 prospectus and 50 percent more than the amount projected in the revised economic baseline.

• Through June 2011, USTAR has recruited more than 40 top researchers to the University of Utah and Utah State University and created 21 research teams. These innovators have come from leading institutions throughout the U.S., including Harvard, Massachusetts Institute of Technology, UCLA, and Case Western Reserve.

• Top researchers with USTAR research teams have generated a portfolio of intellectual property which includes 121 disclosures. From these disclosures, 46 provisional patents have been filed, two patents have been issued and four new Utah companies created—two more companies than projected in the revised economic baseline. In 2011, these four companies employed 13 people.

• The revised baseline estimates project that a total of $432,222 in revenue would be generated through licensing agreements by year five. To date, USTAR has not yet generated licensing revenue.
Economic Contributions of the Utah Science Technology and Research Initiative (USTAR)

USTAR Performance Comparison: Five Year Review
(Data are cumulative through years 1-5 of the program)

<table>
<thead>
<tr>
<th>Measures</th>
<th>2005 Original Economic Prospectus</th>
<th>2011 Revised Economic Baseline</th>
<th>USTAR Actual Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>State/Federal pass through funding</td>
<td>$107,040,200</td>
<td>$66,602,100</td>
<td>$66,602,100</td>
</tr>
<tr>
<td>Federal pass-through funds</td>
<td>$0</td>
<td>$27,000,000</td>
<td>$27,000,000</td>
</tr>
<tr>
<td>PI-generated funding</td>
<td>$38,977,205</td>
<td>$35,093,910</td>
<td>$69,736,870</td>
</tr>
<tr>
<td>Number of research teams</td>
<td>23</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>Number of disclosures</td>
<td>96</td>
<td>112</td>
<td>121</td>
</tr>
<tr>
<td>Licensing revenue</td>
<td>$248,041</td>
<td>$432,222</td>
<td>0</td>
</tr>
<tr>
<td>Number of Utah companies formed</td>
<td>9</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Company employment</td>
<td>138</td>
<td>10</td>
<td>13</td>
</tr>
</tbody>
</table>

Economic Effects of Research Teams

- From FY 2007 through FY 2011, USTAR research teams spent $143.3 million in support of USTAR research projects. The cumulative economic effects of these expenditures on the Utah economy include a total of $112 million in labor earnings for Utah workers, $219.3 million in gross state product for the state of Utah, and $9.9 million in state tax revenue over the five-year period.

- In FY 2011, USTAR research teams spent almost $52 million. The operations of USTAR research teams in that year supported 1,102 jobs in Utah and generated $41.9 million in labor earnings for Utah workers. Contributions to Utah’s GSP totaled $80.9 million. Fiscal impacts included $3.7 million in state tax revenue and $626,796 in tax revenue for local governments.

Economic Impacts of Technology Outreach

- USTAR’s technology outreach efforts have assisted scores of companies, entrepreneurs and researchers throughout the state of Utah. Its two key programs—Technology Outreach and Innovation Program (TOIP) and Technology Commercialization Grants Program (TCG) have helped 82 companies raise $34.3 million in private equity capital and entrepreneurs launch 15 new companies.

- Through TOIP, USTAR has helped 18 individual Utah companies raise $25.6 million in private equity capital. Based on information obtained from companies that received these investments, a large portion of the money was spent locally.

- During its first two years of operation (FY 2010 and FY 2011), the TCG program has resulted in 72 project prototypes, 73 disclosures or patents filed, and approximately $8.7 million in private equity investments for TCG applicants.
In 2011, the economic impacts associated TOIP and TCG included 91 jobs, $3.9 million in earnings for Utah workers, and $5.9 million in GSP. The tax benefits included $410,358 in state tax revenue and $70,129 in taxes for local governments.

Economic Impacts of Building Projects

- USTAR funding has supported the construction of research facilities at the University of Utah (U of U) and Utah State University (USU). USU’s BioInnovations Building was completed in FY 2011 and the U of U building opened in January 2012.

- Through June FY 2011, approximately $195 million has been spent for construction of two research facilities at the U of U and USU campuses.

- These construction projects began in 2007 and have supported an average of 800 jobs annually. Additional economic impacts include $100.1 million in labor earnings for Utah workers and $167.8 million in GSP (totals over the five-year period).

- The fiscal benefits of the building projects include $12.5 million in state tax revenue and $2.1 million in local tax revenues.

Summary Economic Effects

As shown below, the economic impacts generated by the USTAR program in FY 2011 are impressive. The largest share of the impacts in FY 2011 were generated by construction of research buildings. Construction impacts are short-term and temporary whereas the economic effects generated by USTAR’s research teams and outreach efforts are expected to increase and continue well into the future.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Research</th>
<th>Outreach</th>
<th>Construction</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs</td>
<td>1,102</td>
<td>91</td>
<td>1,737</td>
<td>2,930</td>
</tr>
<tr>
<td>Earnings</td>
<td>$41,926,178</td>
<td>$3,890,053</td>
<td>$63,234,931</td>
<td>$109,051,162</td>
</tr>
<tr>
<td>Gross State Product</td>
<td>$80,923,394</td>
<td>$5,873,190</td>
<td>$105,176,642</td>
<td>$191,973,226</td>
</tr>
<tr>
<td>State Tax Revenue</td>
<td>$3,667,702</td>
<td>$410,358</td>
<td>$5,531,792</td>
<td>$9,609,852</td>
</tr>
<tr>
<td>Local Tax Revenue</td>
<td>$626,796</td>
<td>$70,129</td>
<td>$945,362</td>
<td>$1,642,287</td>
</tr>
</tbody>
</table>
INTRODUCTION

In March 2006, the Utah State Legislature passed Senate Bill 75 (SB 75) creating the Utah Science Technology and Research Initiative (USTAR). SB 75 provided money for investments in Utah’s public research universities to promote the commercialization of innovative technologies to generate more technology-based start-up firms, higher paying jobs and expand Utah’s tax base.

Specifically, SB 75 provides funding to USTAR to (1) recruit top-level researchers to the University of Utah and Utah State University and create research teams that will create new businesses in Utah through commercialization of new, innovative technologies developed by these teams, (2) build research and development facilities that will be used by these research teams, and (3) provide technology outreach to encourage the development and commercialization of technologies within the private sector.

At the request of USTAR’s Executive Director, BEBR has (1) provided a comprehensive study of USTAR’s economic impacts on the state of Utah from FY 2007 through FY 2011 and (2) reviewed USTAR’s performance against an economic prospectus based on actual state funding.

Section one presents a revised economic baseline based on actual funding received by USTAR from FY 2007 through FY 2011 and evaluates the program’s performance using these new performance measures.

Section two of the report estimates the annual economic impacts on the Utah economy generated by USTAR’s research team spending.

USTAR has an extensive network of outreach programs that has helped Utah businesses secure grants and private equity capital. Section 3 provides an economic impact assessment of these outreach activities.

Section four provides an economic impact analysis of USTAR’s building activities. This includes the construction of two state-of-the-art interdisciplinary research and development facilities—one at the University of Utah and one at Utah State University.

The economic impact estimates presented in this report were developed using the most recent version of RIMS II, a regional input-output model developed by the Bureau of Economic Analysis, a division of the U.S. Department of Commerce. A discussion of the RIMS II model is provided in Appendix A.

Appendix B presents a summary of the economic effects of the USTAR program from FY 2007 through FY 2011.

A detailed discussion of the assumptions used in developing the economic prospectus and revised economic baseline are included in Appendix C.
REvised Economic Baseline and Evaluation of USTAR’s Performance

Overview
In 2006, the state of Utah established the Utah Science Technology and Research Initiative (USTAR) with passage of Senate Bill 75 (SB 75). The overarching objective of the USTAR initiative was to foster the creation of new technology-based start-ups in Utah.

To achieve this objective, the state agreed to provide funding that would be used to attract top-level researchers to the University of Utah (U of U) and Utah State University (USU). These scientists would generate research dollars and establish research teams to develop new technological innovations, the commercialization of which would generate more technology-based businesses in Utah, thereby expanding the state’s economic base.

To facilitate this process, the state also agreed to fund the construction of state-of-the-art interdisciplinary research and development facilities at both the U of U and USU campuses. A precursor to SB 75 was the development of an economic prospectus by the Bureau of Economic and Business Research (BEBR) evaluating the program’s potential long-term benefits to the Utah economy. These benefits included economic impact estimates generated by research team expenditures and creation of new technology start-up companies formed to utilize the technologies developed by the research teams.

The potential benefits associated with research team spending were estimated using an input-output model developed by the U.S. Department of Commerce, Bureau of Economic Analysis known as RIMS II. RIMS II multipliers were applied to local spending by the USTAR research teams to estimate the effects of spending on jobs, income and gross state product. Estimates of local spending were made using data on university spending patterns developed by BEBR in previous university studies. State and local tax effects were estimated using a model developed by BEBR.1,2

The potential benefits associated with the creation of start-up companies were estimated based on 20 years of data provided by the Offices of Sponsored Research and Technology Commercialization. From these data, BEBR developed a model to estimate the number of research disclosures, licenses, patents and companies generated per million dollars in research spending at the University of Utah. The model also estimated the time frame within which these activities should occur. These output measures provided a quantitative way to measure USTAR’s performance.

The driving factor in the original model was the annual state funding commitment, which
determined the rate at which new research teams were formed. In the original analysis, the state
provided $4 million in funding during the first six months of the program and $25 million annually
thereafter. State funds were used as seed money to hire research teams. These teams were expected
to secure research grants to fund their research programs. From this research would flow
disclosures, licenses and patents. Some number of these would be used to create new Utah
businesses.

During its first five years of operation, USTAR was slated to receive a total of $107.0 million in state
funding. This money would be used to form 23 research teams that in turn would generate almost
$39 million in external research funding.

Technologies developed by research teams were projected to result in 96 disclosures. From these
disclosures, a total of $248,041 in licensing revenue and nine Utah start-up companies were
projected by year five. By the end of 2011, employment at these new companies was projected to be
138 workers.

The USTAR program has actually received less than the amount in the original prospectus. Changes
in the amount and timing of state funding change the economic outputs of the model. It is within
this context that a revised economic baseline was developed.

Revised Economic Baseline
Since its inception, USTAR has received significantly less state funding than originally planned.
Using actual state funding data, BEBR developed a revised economic baseline using the output
metrics defined in the original model. This new baseline—referred to in this study as the “revised
economic baseline”—provides revised output estimates including research team formation trends,
external grants, disclosures, licenses and new company formation rates. These revised outputs are
the expected outcomes given the actual level of state funding for USTAR from FY 2007 through FY
2011.

From FY 2007 through FY 2011 the state provided a total of $93.6 million to the USTAR program,
including $66.6 million in state funds and $27.0 million in federal pass-through funding. This
amount is about 13 percent less than was anticipated in the original 2005 economic prospectus.

Based on a funding level of $93.6 million, a total of 19 research teams should have been in operation
by FY 2011. These teams should have generated a total of $35.1 million in research grants and
contracts, which should produce 112 disclosures, 7 licenses, $432,222 in licensing revenue, and result
in the formation of two Utah companies. Projected employment at these companies should total 10
workers in 2011.

Analysis of USTAR’s Performance
USTAR is on track with, or outperforming the output measures developed in the revised economic
baseline. Up through 2011, USTAR has recruited more than 40 top research scientists to the U of U
and USU and formed a total of 21 research teams.
These innovators have come from leading institutions throughout the U.S., including Harvard, Massachusetts Institute of Technology, UCLA and Case Western Reserve. 3

During the first five years of the program, USTAR research teams have received $69.7 million in externally funded research grants and contracts—almost double the amount projected in the revised prospectus.

USTAR researchers have generated a portfolio of intellectual property that includes 121 disclosures—159 percent of the revised projection. From these disclosures, 46 provisional patents have been filed, 2 patents have been issued and four new Utah companies created. In 2011, these four companies employed 13 people.

Table 1 shows a comparison of USTAR’s actual five-year performance with the original 2005 economic prospectus and the 2011 revised economic baseline.

<table>
<thead>
<tr>
<th>Measures</th>
<th>2005 Original Economic Prospectus</th>
<th>2011 Revised Economic Baseline</th>
<th>USTAR Actual Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>State/Federal pass-through funding</td>
<td>$107,040,200</td>
<td>$93,602,100</td>
<td>$93,602,100</td>
</tr>
<tr>
<td>PI-generated funding</td>
<td>$38,977,205</td>
<td>$35,093,910</td>
<td>$69,736,870</td>
</tr>
<tr>
<td>Number of research teams</td>
<td>23</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>Number of disclosures</td>
<td>96</td>
<td>112</td>
<td>121</td>
</tr>
<tr>
<td>Licensing revenue</td>
<td>$248,041</td>
<td>$432,222</td>
<td>--</td>
</tr>
<tr>
<td>Number of Utah companies formed</td>
<td>9</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Company employment</td>
<td>138</td>
<td>10</td>
<td>13</td>
</tr>
</tbody>
</table>

Note: Data are cumulative through the first five years of the program. Employment data provided by USTAR.

Source: Bureau of Economic and Business Research, David Eccles School of Business, University of Utah, 2012.

ECONOMIC EFFECTS OF USTAR RESEARCH TEAM SPENDING

A primary objective of the USTAR program is to facilitate economic development through the expansion of research programs at the U of U and USU and through commercialization of technologies developed in those research programs.

To this end, USTAR has established 21 research teams and recruited more than 40 top researchers to the U of U and USU. Thirteen teams are located on the U of U campus and the remaining 8 are on the USU campus.

The economic effects generated by these research teams flow to the state in two ways. First, the teams generate federal and private research dollars to fund their research activities. As these dollars are used to pay the wages and salaries of the research team members and to purchase goods and services from Utah businesses, economic impacts are generated.

The second way research teams impact the state’s economy is through the development of novel research that leads to the formation of new Utah-based companies. These new companies provide economic benefits with their direct employment and wages.

Using multiplier analysis, the economic benefits of research team spending and of job creation at new companies can be estimated. These impacts have been measured using the RIMS II economic impact model.

The estimates presented in this analysis are economic contributions as they take into account all money spent by the teams regardless of the source of that money. Therefore this study should be viewed as an economic contribution analysis rather than an economic impact analysis, as an impact analysis considers only money that flows to the state from outside sources.

Economic Effects of USTAR Research Team Spending

Since FY 2007, USTAR research teams have raised $93.7 million in external research funding. This total includes $69.7 million in grant awards received through the end of FY 2011 and $24.0 million in grant awards committed through FY 2014.

From FY 2007 through FY 2011, research teams spent approximately $143.3 million. This includes money spent for wages, salaries and benefits, equipment purchases and purchases of other goods and services made to support the teams’ research activities. An estimated $106.6 million of all team expenditures were local.

Table 2 shows the amount of external research grants raised by USTAR teams each year since FY 2007 and the amounts spent by USTAR teams during each of those years.
The economic contributions of USTAR research have steadily increased. While research teams were established at both universities in 2007, the most significant economic effects occurred in FY 2011, driven by the formation of more research teams, an increase in the amount of external funding raised by the teams and, subsequently, an increase in the amount of money spent by the teams.

During FY 2007, eight USTAR teams were in operation—five at the U of U and three at USU. These teams spent approximately $2.5 million, which supported an estimated 57 jobs throughout the state of Utah, generated $2.1 million in earnings for Utah workers, and provided $181,884 in state tax revenue.

By FY 2011, 21 teams had been formed and were operating. Total spending by those teams increased to nearly $52 million ($30 million from external grants and $22 million in state and federal funding). This level of spending supported 1,102 jobs in Utah, generated almost $42 million in earnings, and provided about $3.7 million in tax revenue for the state of Utah.

As shown in Table 3, the activities of USTAR team operations have generated more than $112.8 million in earnings for Utah workers from FY 2007 through FY 2011. The contribution to Utah’s gross state product has been $219.3 million. The state has garnered almost $9.9 million in tax revenue.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Expenditures</th>
<th>Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>$282,690</td>
<td>$2,547,289</td>
</tr>
<tr>
<td>2008</td>
<td>$1,973,465</td>
<td>$15,443,841</td>
</tr>
<tr>
<td>2009</td>
<td>$16,501,459</td>
<td>$34,114,156</td>
</tr>
<tr>
<td>2010</td>
<td>$20,703,343</td>
<td>$39,215,226</td>
</tr>
<tr>
<td>2011</td>
<td>$30,275,913</td>
<td>$51,945,950</td>
</tr>
<tr>
<td>Total</td>
<td>$69,736,870</td>
<td>$143,266,462</td>
</tr>
</tbody>
</table>

Notes: (1) Research grants do not include approximately $24 million in awards committed but not yet received. (2) External grants includes Uintah Impact Mitigation Special Services District Funds.

Source: Michael O’Malley, Marketing Director, USTAR, 2011.
Table 3

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Number of Teams</th>
<th>Jobs Effects</th>
<th>Earnings Effects</th>
<th>GSP Effects</th>
<th>State Tax Effects</th>
<th>Local Tax Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>8</td>
<td>57</td>
<td>$2,079,148</td>
<td>$400,774</td>
<td>$181,884</td>
<td>$31,083</td>
</tr>
<tr>
<td>2008</td>
<td>11</td>
<td>292</td>
<td>$10,595,376</td>
<td>$21,439,518</td>
<td>$926,883</td>
<td>$158,401</td>
</tr>
<tr>
<td>2009</td>
<td>17</td>
<td>713</td>
<td>$26,408,040</td>
<td>$51,566,799</td>
<td>$2,310,175</td>
<td>$394,800</td>
</tr>
<tr>
<td>2010</td>
<td>20</td>
<td>882</td>
<td>$31,831,691</td>
<td>$61,344,070</td>
<td>$2,784,636</td>
<td>$475,884</td>
</tr>
<tr>
<td>2011</td>
<td>21</td>
<td>1,102</td>
<td>$41,926,178</td>
<td>$80,923,394</td>
<td>$3,667,702</td>
<td>$626,796</td>
</tr>
<tr>
<td>Totals</td>
<td>21</td>
<td></td>
<td>$112,840,433</td>
<td>$219,274,555</td>
<td>$9,871,280</td>
<td>$1,686,964</td>
</tr>
</tbody>
</table>

Note: Impacts include direct, indirect and induced effects.

Source: Bureau of Economic and Business Research, David Eccles School of Business, University of Utah, 2012.

Based on the economic effects of USTAR research team spending in FY 2011, every $1.0 million in research expenditures supported 21.2 jobs in Utah, generated $807,126 in earnings for Utah workers, $1.56 million in gross state product and produced $70,627 in state tax revenue (Table 4).

Table 4

<table>
<thead>
<tr>
<th>Economic Measure</th>
<th>$1.0 million in research spending generates...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs</td>
<td>21.2</td>
</tr>
<tr>
<td>Earnings</td>
<td>$807,126</td>
</tr>
<tr>
<td>Gross State Product</td>
<td>$1,557,867</td>
</tr>
<tr>
<td>State Tax Revenue</td>
<td>$70,627</td>
</tr>
<tr>
<td>Local Tax Revenue</td>
<td>$12,067</td>
</tr>
</tbody>
</table>

Source: Calculated by the Bureau of Economic and Business Research, David Eccles School of Business, University of Utah, 2012.

Company Formation and Employment

In addition to the impacts generated by USTAR team spending there are the impacts associated with new companies that have been created through the commercialization of USTAR research. Based on information provided by USTAR, a total of four new companies have been formed or moved to Utah as a direct result of the USTAR program. These companies include Thera Target, Headwaters Clear Carbon Solutions, Metallosensors and Space Environment Technology. In 2011, these four companies employed a total of 13 employees.\(^4\)

\(^4\) Employment information for these companies was provided by USTAR.
3 Economic Impacts of USTAR Outreach Activities

Overview
Establishing a regional technology outreach program was a critical piece of USTAR’s enabling legislation. To this end, USTAR has developed its Technology Outreach Innovation program (TOIP). This regional program is led by directors located throughout the state of Utah. Each director heads an Outreach Center located at one of the state’s institutions of higher education.

The objectives of the Outreach Centers are myriad. TOIP teams work with companies, entrepreneurs, faculty and other economic development stakeholders to promote activities that drive economic growth. These include assisting individuals in launching new companies, raising private equity and providing business development assistance. Since 2008, USTAR’s TOIP teams have completed more than 300 projects and have been instrumental in helping 18 companies raise $25.6 million in private equity.

In FY 2009, USTAR launched the Technology Commercialization Grant program (TCG), which links regional higher education institutions with local innovators in an effort to commercialize promising new technologies. To date, 87 projects have been approved, with the typical grant in the range of $30,000. In two years, the impact of the program has been considerable. By the end of FY 2011, the program had generated 73 disclosures and patents, created 15 new companies and helped raise more than $8.7 million in private equity investment.

Economic Impacts of USTAR Outreach Activities
The full effects of USTAR’s outreach efforts are difficult to measure; however, the impacts associated with private equity investments and TCG spending can be quantified using input-output analysis. These impacts have been estimated using direct effect multipliers in RIMS II.

From FY 2008 (the first year a private equity investment was made in a TOIP client) through FY 2011, USTAR has played a role in helping 82 Utah companies raise a total of $34.3 million. The impacts of private equity, and other follow-on funding, raised through the TOIP and TCG programs are shown in Table 5 and include a total four-year earnings impact of almost $20 million and contributions to Utah’s GSP of $26.7 million. The tax impacts include $1.8 million in state tax revenue and $309,621 in taxes for local governments.

5 The $34.3 million includes private equity, loans, and SBIR grants.
Table 5
USTAR Outreach Activities
Economic Impacts of Private Equity Capital and Follow-on Financing: FY 2008-FY 2011

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Jobs Impacts</th>
<th>Earnings Impacts</th>
<th>Gross State Product Impacts</th>
<th>State Tax Revenue Impacts</th>
<th>Local Tax Revenue Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>57</td>
<td>$2,440,866</td>
<td>$3,637,437</td>
<td>$213,527</td>
<td>$36,491</td>
</tr>
<tr>
<td>2009</td>
<td>131</td>
<td>$5,987,686</td>
<td>$8,719,210</td>
<td>$523,803</td>
<td>$89,516</td>
</tr>
<tr>
<td>2010</td>
<td>131</td>
<td>$7,591,011</td>
<td>$8,437,001</td>
<td>$664,062</td>
<td>$113,485</td>
</tr>
<tr>
<td>2011</td>
<td>91</td>
<td>$3,890,053</td>
<td>$5,873,190</td>
<td>$410,358</td>
<td>$70,129</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>$19,909,616</td>
<td>$26,666,838</td>
<td>$1,811,750</td>
<td>$309,621</td>
</tr>
</tbody>
</table>

Source: Bureau of Economic and Business Research, David Eccles School of Business, University of Utah, 2012.
ECONOMIC IMPACTS OF USTAR RESEARCH FACILITY CONSTRUCTION

USTAR funding supports construction of state-of-the-art interdisciplinary research and innovation facilities at the U of U and USU. Since inception, USTAR has initiated construction of two research and development facilities: the USTAR BioInnovations Center at USU and the James L. Sorenson Molecular Biotechnology Building (Sorenson Center) at the U of U. The BioInnovations Center was completed in January 2011. The Sorenson Center is scheduled for completion in early 2012.

Engineering and design for both projects began in FY 2007. Through FY 2011, building costs for the centers totaled approximately $195.0 million. The largest share of financing for these facilities came from issuing general obligation bonds ($156.0 million). The phasing and building costs for each building are presented in Table 6.

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>U of U Sorenson Center</th>
<th>USU BioInnovations Center</th>
<th>Total Spending</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>$932,821</td>
<td>$149,684</td>
<td>$1,082,505</td>
</tr>
<tr>
<td>2008</td>
<td>$632,136</td>
<td>$862,911</td>
<td>$1,495,047</td>
</tr>
<tr>
<td>2009</td>
<td>$8,603,287</td>
<td>$10,481,965</td>
<td>$19,085,252</td>
</tr>
<tr>
<td>2010</td>
<td>$48,243,322</td>
<td>$38,821,750</td>
<td>$87,065,072</td>
</tr>
<tr>
<td>2011</td>
<td>$78,698,388</td>
<td>$7,265,357</td>
<td>$85,963,745</td>
</tr>
<tr>
<td>Totals</td>
<td>$137,109,954</td>
<td>$57,581,667</td>
<td>$194,691,621</td>
</tr>
</tbody>
</table>

Source: Michael O’Malley, USTAR Marketing Director, USTAR, 2011

Economic Impacts of Construction Spending

The economic impact estimates shown here were developed using RIMS II final demand multipliers for Utah’s construction industry.

From FY 2007 through FY 2011, construction spending for USTAR research facilities supported an average of 801 jobs annually, generated $143.2 million in earnings for Utah workers and $238.2 million in GSP for the state of Utah. The resulting fiscal benefits include almost $12.5 million in state taxes and $2.1 million in taxes for local governments.

The construction impacts for each building are shown in Tables 7 and 8. Table 9 shows total impacts.
Table 7

USTAR Research Facility Construction Impacts: FY 2007-FY 2011
University of Utah
James L. Sorenson Molecular Biotechnology Center

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Jobs</th>
<th>Earnings</th>
<th>Gross State Product</th>
<th>State Tax Revenue</th>
<th>Local Tax Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>20</td>
<td>$686,183</td>
<td>$1,141,306</td>
<td>$30,027</td>
<td>$10,258</td>
</tr>
<tr>
<td>2008</td>
<td>13</td>
<td>$464,999</td>
<td>$773,418</td>
<td>$40,678</td>
<td>$6,952</td>
</tr>
<tr>
<td>2009</td>
<td>182</td>
<td>$3,282,578</td>
<td>$10,526,122</td>
<td>$553,624</td>
<td>$94,612</td>
</tr>
<tr>
<td>2010</td>
<td>1,002</td>
<td>$35,487,788</td>
<td>$59,025,704</td>
<td>$3,104,472</td>
<td>$530,542</td>
</tr>
<tr>
<td>2011</td>
<td>1,590</td>
<td>$57,890,534</td>
<td>$96,287,478</td>
<td>$5,064,264</td>
<td>$865,463</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>$100,858,082</td>
<td>$167,754,028</td>
<td>$8,793,065</td>
<td>$1,507,827</td>
</tr>
</tbody>
</table>

Source: Bureau of Economic and Business Research, David Eccles School of Business, University of Utah, 2012.

Table 8

USTAR Research Facility Construction Impacts: FY 2007-FY 2011
Utah State University
BioInnovations Center

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Jobs</th>
<th>Earnings</th>
<th>Gross State Product</th>
<th>State Tax Revenue</th>
<th>Local Tax Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>4</td>
<td>$110,108</td>
<td>$183,138</td>
<td>$9,632</td>
<td>$1,646</td>
</tr>
<tr>
<td>2008</td>
<td>18</td>
<td>$634,757</td>
<td>$1,055,772</td>
<td>$55,529</td>
<td>$9,490</td>
</tr>
<tr>
<td>2009</td>
<td>221</td>
<td>$7,710,533</td>
<td>$12,824,684</td>
<td>$674,517</td>
<td>$115,272</td>
</tr>
<tr>
<td>2010</td>
<td>807</td>
<td>$28,557,279</td>
<td>$47,498,411</td>
<td>$2,498,191</td>
<td>$426,931</td>
</tr>
<tr>
<td>2011</td>
<td>147</td>
<td>$5,344,397</td>
<td>$8,889,164</td>
<td>$467,528</td>
<td>$79,899</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>$42,357,074</td>
<td>$70,451,170</td>
<td>$3,705,397</td>
<td>$633,238</td>
</tr>
</tbody>
</table>

Source: Bureau of Economic and Business Research, David Eccles School of Business, University of Utah, 2012.

Table 9

USTAR Research Facilities
Total Construction Impacts: FY 2007-FY 2011

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Jobs</th>
<th>Earnings</th>
<th>Gross State Product</th>
<th>State Tax Revenue</th>
<th>Local Tax Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>24</td>
<td>$796,291</td>
<td>$1,324,444</td>
<td>$39,659</td>
<td>$11,904</td>
</tr>
<tr>
<td>2008</td>
<td>31</td>
<td>$1,099,756</td>
<td>$1,829,190</td>
<td>$96,207</td>
<td>$16,442</td>
</tr>
<tr>
<td>2009</td>
<td>403</td>
<td>$14,039,111</td>
<td>$23,350,806</td>
<td>$1,228,141</td>
<td>$209,884</td>
</tr>
<tr>
<td>2010</td>
<td>1,809</td>
<td>$64,045,067</td>
<td>$106,524,115</td>
<td>$5,602,663</td>
<td>$957,473</td>
</tr>
<tr>
<td>2011</td>
<td>1,737</td>
<td>$63,234,931</td>
<td>$105,176,642</td>
<td>$5,531,792</td>
<td>$945,362</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>$143,215,156</td>
<td>$238,205,197</td>
<td>$12,498,462</td>
<td>$2,141,065</td>
</tr>
</tbody>
</table>

Source: Bureau of Economic and Business Research, David Eccles School of Business, University of Utah, 2012.
5 SUMMARY ECONOMIC EFFECTS OF THE USTAR PROGRAM: FY 2007 -FY 2011

The USTAR program has been exceptionally successful in fostering economic growth in the state of Utah. Table 10 summarizes the economic effects generated by USTAR’s three program missions—research team spending, outreach activities and research facility construction.

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Jobs</th>
<th>Earnings</th>
<th>Gross State Product</th>
<th>State Tax Revenue</th>
<th>Local Tax Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>81</td>
<td>$2,875,439</td>
<td>$5,325,218</td>
<td>$251,543</td>
<td>$42,987</td>
</tr>
<tr>
<td>2008</td>
<td>380</td>
<td>$14,135,998</td>
<td>$26,906,145</td>
<td>$1,236,617</td>
<td>$211,334</td>
</tr>
<tr>
<td>2009</td>
<td>1,247</td>
<td>$46,434,837</td>
<td>$83,636,815</td>
<td>$4,062,119</td>
<td>$694,200</td>
</tr>
<tr>
<td>2010</td>
<td>2,822</td>
<td>$103,467,769</td>
<td>$176,305,186</td>
<td>$9,051,361</td>
<td>$1,546,842</td>
</tr>
<tr>
<td>2011</td>
<td>2,930</td>
<td>$109,051,162</td>
<td>$191,973,226</td>
<td>$9,609,852</td>
<td>$1,642,287</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>$275,965,205</td>
<td>$484,146,590</td>
<td>$24,181,492</td>
<td>$4,137,650</td>
</tr>
</tbody>
</table>

Source: Bureau of Economic and Business Research, David Eccles School of Business, University of Utah, 2012.

In year five of the program (FY 2011) USTAR’s activities (research, outreach and construction) supported 2,930 jobs throughout the state and generated $109.1 million in earnings for Utah workers. Gross state product increased by almost $192 million. The effect on state tax revenue was $9.6 million.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Research</th>
<th>Outreach</th>
<th>Construction</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs</td>
<td>1,102</td>
<td>91</td>
<td>1,737</td>
<td>2,930</td>
</tr>
<tr>
<td>Earnings</td>
<td>$41,926,178</td>
<td>$3,890,053</td>
<td>$63,234,931</td>
<td>$109,051,162</td>
</tr>
<tr>
<td>Gross State Product</td>
<td>$80,923,394</td>
<td>$5,873,190</td>
<td>$105,176,642</td>
<td>$191,973,226</td>
</tr>
<tr>
<td>State Tax Revenue</td>
<td>$3,667,702</td>
<td>$410,358</td>
<td>$5,531,792</td>
<td>$9,609,852</td>
</tr>
<tr>
<td>Local Tax Revenue</td>
<td>$626,796</td>
<td>$70,129</td>
<td>$945,362</td>
<td>$1,642,287</td>
</tr>
</tbody>
</table>

Source: Bureau of Economic and Business Research, David Eccles School of Business, University of Utah, 2012.

As shown in Table 11, construction generated the largest impacts in FY 2011 (as it did in previous years). Most of the construction has been completed, so going forward the impacts of the program will be generated by research team spending and outreach.
APPENDIX A
ECONOMIC IMPACT MODELING

Economic impacts are the changes in the size and structure of a region’s economy that occur when goods and services are purchased from vendors within the region with money generated outside the region. In the strictest interpretation, economic impacts occur only when “new” money enters the regional economy and is then spent locally. Such an inflow has the potential to expand the size and strength of the region’s economy. Money spent outside the region is considered “leakage” and does not generate economic growth within the region. Likewise, purchases of goods and services by local residents from local vendors do not increase the economic base of the region; they simply reshuffle existing resources.

Various models have been built to evaluate the economic impacts that occur with changes in regional exports. The key inputs to these models are the direct impacts, which are the spending injections into the community when goods produced locally are sold outside the region. One of the most commonly used models for regional impact analysis is the single region input-output (I-O) model.

Input-Output Models
I-O models capture business-to-business purchases within a region. If an export base industry purchases raw materials, equipment or other inputs from local producers, this effectively increases the size of the region’s export base; these are the indirect effects. These inter-industry linkages are captured in an I-O model. I-O models also capture induced spending generated when households supported by these direct and indirect activities purchase goods and services within the region. One of the most commonly used I-O models is RIMS II (Regional Input-Output Modeling System).

Estimating Economic Impacts and Effects Using RIMS II
The economic impact and effect estimates presented in this report were generated using RIMS II. RIMS II is the updated version of the Regional Input-Output Modeling System developed by the U.S. Department of Commerce, Bureau of Economic Analysis (BEA). RIMS II is based on an accounting framework called an input-output table, which shows the input and output structure of approximately 500 industries in the U.S. The BEA’s regional economic accounts are used to adjust the national I-O table to show a region’s industrial structure and trading patterns. RIMS II multipliers can be estimated for any region in the U.S. that is composed of one or more counties, and for any industry or group of industries in the national I-O table.

The RIMS II method for estimating regional I-O multipliers can be viewed as a three-step process. In the first step, the producer portion of the national I-O table is made region-specific by using six-digit NAICS location quotients (LQs). The LQs estimate the extent to which input requirements are supplied by firms within the region.
RIMS II uses LQs based on two types of data. BEA’s personal income data (by place of residence) are used to calculate LQs in the service industries and BEA’s wage and salary data (by place of work) are used to calculate LQs in the nonservice industries.

In the second step, the household row and the household column from the national I-O table are made region-specific. The household row coefficients are adjusted to reflect regional earnings leakages that result when individuals working in one region reside in another. The household column coefficients are adjusted to account for regional consumption leakages stemming from personal taxes and savings.

In the last step, the Leontief inversion approach is used to estimate the multipliers. This inversion produces output, earnings, employment and value-added (or gross state product) multipliers which can be used to trace the impacts of changes in final demand, by industry, within a specific region.7

Estimating Fiscal Impacts

The fiscal impacts presented in this analysis were estimated by quantifying the relationship between earnings and selected state and local tax collections in 2007-08 using data published by the U.S. Census Bureau. These relationships are expressed as ratios that represent the effective state and local tax rates. These ratios are applied to the total earnings impact estimates.

To estimate the impact on state tax revenue, BEBR quantified the relationship between earnings and the following taxes: individual income tax, state sales tax and other miscellaneous taxes. The ratio used to estimate state tax revenue was 8.74 percent.

To estimate the impact on local tax revenues, BEBR quantified the relationship between earnings and local sales taxes and other miscellaneous taxes. The ratio used to estimate local tax revenue impacts was 1.50 percent.

The fiscal impact estimates generated in this report should be viewed as broad measures. This methodology assumes a linear relationship between state and local taxes and earnings. While this assumption may hold with respect to state income tax collections and to a lesser degree, sales tax collections, the relationship between earnings and corporate income tax and property tax (which was not included in the analysis) is less obvious.

Terms Used in This Report
Terms are presented in groups within a logical rather than alphabetical order. The definitions presented here are consistent with measures developed by the Bureau of Economic Analysis.

Economic Impact Analysis estimates the impact of dollars generated outside the region (new dollars) on the region’s economy.

Economic Contribution Analysis shows the economic contribution of purchases made within the region without regard to the source of the money used to make those purchases.

Direct Impacts are the changes in economic activity within the region during the first round of spending. Typically these include the direct employment and direct spending in the region by the business or industry under study.

Indirect Impacts are the changes in sales, labor income and employment within the region in backward-linked industries that supply goods and services to the business or industry under study.

Induced Impacts are the increased sales within the region from household spending of the income earned for both the business or industry under study and supporting businesses.

Total Impacts are the sum of direct, indirect and induced effects or impacts.

Multipliers capture the size of the secondary effects in a given region, generally as a ratio of the total change in economic activity in the region relative to the direct change. Multipliers express the degree of interdependency between sectors in a region’s economy.

Measures of Economic Activity:

Earnings are the sum of wage and salary disbursements, supplements to wages and salaries and proprietors’ income. Earnings are an economic “flow”, meaning they can be summed from year to year in order to estimate total impacts over time.

Jobs is a measure of the number of jobs required to produce a given volume of sales or production. Jobs include full-time and part-time workers as well as the self-employed. Jobs are a “stock”, meaning they are a point-in-time estimate and cannot be added over time.

Value-Added/Gross State Product is the sum of total income and indirect business taxes and is equivalent to the gross state or regional product measure. Value added is the most commonly used measure of the contribution of a region to the national economy as it avoids double counting of intermediate sales and captures only the “value-added” by the region (or business) to final products. In this report, value-added is referred to as gross state product. Value-added is a flow.
APPENDIX B

TOTAL USTAR ECONOMIC EFFECTS ON UTAH’S ECONOMY

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>State and Federal Funding</th>
<th>External Grant Awards</th>
<th>USTAR Companies Formed</th>
<th>Jobs</th>
<th>Earnings</th>
<th>State Tax Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 07</td>
<td>$15,000,000</td>
<td>$282,690</td>
<td>0</td>
<td>81</td>
<td>$2,875,439</td>
<td>$251,543</td>
</tr>
<tr>
<td>FY 08</td>
<td>$15,000,000</td>
<td>$1,973,465</td>
<td>0</td>
<td>380</td>
<td>$14,135,998</td>
<td>$1,236,617</td>
</tr>
<tr>
<td>FY 09</td>
<td>$15,421,500</td>
<td>$16,501,459</td>
<td>3</td>
<td>1,247</td>
<td>$46,434,837</td>
<td>$4,062,119</td>
</tr>
<tr>
<td>FY 10</td>
<td>$24,543,000</td>
<td>$20,703,343</td>
<td>1</td>
<td>2,822</td>
<td>$103,467,769</td>
<td>$9,051,361</td>
</tr>
<tr>
<td>FY 11</td>
<td>$23,637,600</td>
<td>$30,275,913</td>
<td>0</td>
<td>2,930</td>
<td>$109,051,162</td>
<td>$9,609,852</td>
</tr>
</tbody>
</table>
APPENDIX C
DATA DEVELOPMENT

The primary data used to estimate the economic impacts of the USTAR program were provided by USTAR. The methodology used to estimate the potential outputs of the USTAR program (research dollars generated, number of disclosures, licenses and new company formation) was developed by BEBR in 2005 for use in projecting impacts of the USTAR program using hypothetical data.

The assumptions used in the original economic prospectus are briefly discussed in this section. A detailed discussion of the original prospectus can be accessed electronically at http://ustar.usu.edu/files/uploads/EconomicProspectus.

Original 2005 Economic Prospectus
The original economic prospectus model for the USTAR program was developed by BEBR in 2005 using information from numerous sources at the University of Utah and Utah State University. The assumptions regarding team formation and the amount of external funding used to populate the model were provided by senior staff at the U of U. A steady stream of state money was core to those assumptions and determined the rate at which research teams would be formed and funded over a 25-year period.

Team spending patterns in the 2005 economic prospectus were estimated using information on research spending at the U of U and USU included in a study completed by BEBR in 2005. Using data developed in that study, BEBR estimated the local industry composition of purchases made by the research teams. The economic impacts generated by those purchases were estimated using RIMS II multipliers.

Using data provided by the University of Utah’s Technology Commercialization Office (TCO) and Office of Sponsored Projects, BEBR developed a methodology to estimate the relationship between research spending at the U of U, number of disclosures, timing of those disclosures, number of licenses flowing from those disclosures and number of licenses leading to the formation of a new Utah company. Employment trends were estimated using 20 years of employment data on U of U spin-offs compiled from numerous reports completed by BEBR. A detailed analysis of this process is provided in the 2005 Economic Prospectus.

The construction impacts in the original economic prospectus were developed using RIMS II and information provided by the U of U and USU about the anticipated construction costs of four new research facilities; two at the U of U and two at USU.
Revised Economic Baseline

The amount of state money received by USTAR has been lower than the amount used to form the assumptions in the 2005 economic prospectus. To provide a realistic baseline on which to monitor the USTAR program, revisions to the original prospectus were made using the actual amount of state funding for the program. The relationships developed in the original economic prospectus (as discussed above) were used to develop the revised output measures based on actual state funding and actual expenditures by USTAR research teams.

The primary data used to populate the revised model were provided by USTAR and included information about state funding, external research funding, disclosures, licenses and new company formation.

The economic impacts of USTAR research teams were estimated using RIMS II and research team expenditures provided by USTAR. The team spending patterns were based on detailed research spending data provided by the U of U for a study completed by BEBR in 2011.

The construction impacts of the two research facilities built as part of the USTAR mission were estimated using RIMS II and actual construction spending data provided by Utah contractors to USTAR.

Economic Impacts of USTAR Outreach Activities

In this study the economic impacts of USTAR outreach activities are limited to activities that can be quantifiably measured, in this case, new dollars flowing into the state. USTAR’s outreach activities have helped Utah companies raise private equity and other types of follow-on funding. To the extent that this money is spent locally, the state benefits through increased employment, earnings and tax revenue.

To estimate the potential impacts of this money, BEBR and a USTAR consultant contacted USTAR’s clients that received private equity and other types of funding as a result of USTAR’s assistance and asked those companies information about changes in employment and spending that resulted from the investments. The economic impacts of those changes were then estimated using RIMS II.